Applied Sciences (Nov 2022)

Fast Prediction of Flow Field around Airfoils Based on Deep Convolutional Neural Network

  • Ming-Yu Wu,
  • Yan Wu,
  • Xin-Yi Yuan,
  • Zhi-Hua Chen,
  • Wei-Tao Wu,
  • Nadine Aubry

DOI
https://doi.org/10.3390/app122312075
Journal volume & issue
Vol. 12, no. 23
p. 12075

Abstract

Read online

We propose a steady-state aerodynamic data-driven method to predict the incompressible flow around airfoils of NACA (National Advisory Committee for Aeronautics) 0012-series. Using the Signed Distance Function (SDF) to parameterize the geometric and flow condition setups, the prediction core of the method is constructed essentially by a consecutive framework of a convolutional neural network (CNN) and a deconvolutional neural network (DCNN). Impact of training parameters on the behavior of the proposed CNN-DCNN model is studied, so that appropriate learning rate, mini-batch size, and random deactivation rate are specified. Tested by “unseen” airfoil geometries and far-field velocities, it is found that the prediction process is three orders of magnitudes faster than a corresponding Computational Fluid Dynamics (CFD) simulation, while relative errors are maintained lower than 1% on most of the sample points. The proposed model manages to capture the essential dynamics of the flow field, as its predictions correspond reasonably with the reconstructed field by proper orthogonal decomposition (POD). The performance and accuracy of the proposed model indicate that the deep learning-based approach has great potential as a robust predictive tool for aerodynamic design and optimization.

Keywords