Frontiers in Medicine (May 2022)
Monitoring Long Term Noninvasive Ventilation: Benefits, Caveats and Perspectives
Abstract
Long term noninvasive ventilation (LTNIV) is a recognized treatment for chronic hypercapnic respiratory failure (CHRF). COPD, obesity-hypoventilation syndrome, neuromuscular disorders, various restrictive disorders, and patients with sleep-disordered breathing are the major groups concerned. The purpose of this narrative review is to summarize current knowledge in the field of monitoring during home ventilation. LTNIV improves symptoms related to CHRF, diurnal and nocturnal blood gases, survival, and health-related quality of life. Initially, patients with LTNIV were most often followed through elective short in-hospital stays to ensure patient comfort, correction of daytime blood gases and nocturnal oxygenation, and control of nocturnal respiratory events. Because of the widespread use of LTNIV, elective in-hospital monitoring has become logistically problematic, time consuming, and costly. LTNIV devices presently have a built-in software which records compliance, leaks, tidal volume, minute ventilation, cycles triggered and cycled by the patient and provides detailed pressure and flow curves. Although the engineering behind this information is remarkable, the quality and reliability of certain signals may vary. Interpretation of the curves provided requires a certain level of training. Coupling ventilator software with nocturnal pulse oximetry or transcutaneous capnography performed at the patient's home can however provide important information and allow adjustments of ventilator settings thus potentially avoiding hospital admissions. Strategies have been described to combine different tools for optimal detection of an inefficient ventilation. Recent devices also allow adapting certain parameters at a distance (pressure support, expiratory positive airway pressure, back-up respiratory rate), thus allowing progressive changes in these settings for increased patient comfort and tolerance, and reducing the requirement for in-hospital titration. Because we live in a connected world, analyzing large groups of patients through treatment of “big data” will probably improve our knowledge of clinical pathways of our patients, and factors associated with treatment success or failure, adherence and efficacy. This approach provides a useful add-on to randomized controlled studies and allows generating hypotheses for better management of HMV.
Keywords