Advanced Self-Passivating Alloys for an Application under Extreme Conditions
Andrey Litnovsky,
Felix Klein,
Xiaoyue Tan,
Janina Ertmer,
Jan W. Coenen,
Christian Linsmeier,
Jesus Gonzalez-Julian,
Martin Bram,
Ivan Povstugar,
Thomas Morgan,
Yury M. Gasparyan,
Alexey Suchkov,
Diana Bachurina,
Duc Nguyen-Manh,
Mark Gilbert,
Damian Sobieraj,
Jan S. Wróbel,
Elena Tejado,
Jiri Matejicek,
Henning Zoz,
Hans Ulrich Benz,
Pawel Bittner,
Anicha Reuban
Affiliations
Andrey Litnovsky
Forschungszentrum Jülich GmbH, Institut für Energie und Klimaforschung, 52425 Jülich, Germany
Felix Klein
Forschungszentrum Jülich GmbH, Institut für Energie und Klimaforschung, 52425 Jülich, Germany
Xiaoyue Tan
Forschungszentrum Jülich GmbH, Institut für Energie und Klimaforschung, 52425 Jülich, Germany
Janina Ertmer
Forschungszentrum Jülich GmbH, Institut für Energie und Klimaforschung, 52425 Jülich, Germany
Jan W. Coenen
Forschungszentrum Jülich GmbH, Institut für Energie und Klimaforschung, 52425 Jülich, Germany
Christian Linsmeier
Forschungszentrum Jülich GmbH, Institut für Energie und Klimaforschung, 52425 Jülich, Germany
Jesus Gonzalez-Julian
Forschungszentrum Jülich GmbH, Institut für Energie und Klimaforschung, 52425 Jülich, Germany
Martin Bram
Forschungszentrum Jülich GmbH, Institut für Energie und Klimaforschung, 52425 Jülich, Germany
Ivan Povstugar
Forschungszentrum Jülich GmbH, Zentralinstitut für Engineering, Elektronik und Analytik, 52425 Jülich, Germany
Thomas Morgan
DIFFER—Dutch Institute for Fundamental Energy Research, De Zaale 20, 5612 AJ Eindhoven, The Netherlands
Yury M. Gasparyan
Plasma Physics Department, Institute of Laser and Plasmas Technologies, National Research Nuclear University MEPhI, Kashirskoe sh., 31, 115409 Moscow, Russia
Alexey Suchkov
Department of Materials Science, Institute of Nuclear Physics and Engineering, National Research Nuclear University MEPhI, Kashirskoe sh., 31, 115409 Moscow, Russia
Diana Bachurina
Department of Materials Science, Institute of Nuclear Physics and Engineering, National Research Nuclear University MEPhI, Kashirskoe sh., 31, 115409 Moscow, Russia
Duc Nguyen-Manh
CCFE, United Kingdom Atomic Energy Authority, Culham Science Centre, Abingdon OX14 3DB, UK
Mark Gilbert
CCFE, United Kingdom Atomic Energy Authority, Culham Science Centre, Abingdon OX14 3DB, UK
Damian Sobieraj
Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw, Poland
Jan S. Wróbel
Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw, Poland
Elena Tejado
Departamento de Ciencia de Materiales-CIME, Universidad Politécnica de Madrid, C/Profesor Aranguren 3, E28040 Madrid, Spain
Jiri Matejicek
Institute of Plasma Physics of the Czech Academy of Sciences, Za Slovankou 3, 18200 Praha, Czech Republic
Henning Zoz
Zoz Group, Maltoz-Str., 57482 Wenden, Germany
Hans Ulrich Benz
Zoz Group, Maltoz-Str., 57482 Wenden, Germany
Pawel Bittner
Forschungszentrum Jülich GmbH, Institut für Energie und Klimaforschung, 52425 Jülich, Germany
Anicha Reuban
Forschungszentrum Jülich GmbH, Institut für Energie und Klimaforschung, 52425 Jülich, Germany
Self-passivating Metal Alloys with Reduced Thermo-oxidation (SMART) are under development for the primary application as plasma-facing materials for the first wall in a fusion DEMOnstration power plant (DEMO). SMART materials must combine suppressed oxidation in case of an accident and an acceptable plasma performance during the regular operation of the future power plant. Modern SMART materials contain chromium as a passivating element, yttrium as an active element and a tungsten base matrix. An overview of the research and development program on SMART materials is presented and all major areas of the structured R&D are explained. Attaining desired performance under accident and regular plasma conditions are vital elements of an R&D program addressing the viability of the entire concept. An impressive more than 104-fold suppression of oxidation, accompanied with more than 40-fold suppression of sublimation of tungsten oxide, was attained during an experimentally reproduced accident event with a duration of 10 days. The sputtering resistance under DEMO-relevant plasma conditions of SMART materials and pure tungsten was identical for conditions corresponding to nearly 20 days of continuous DEMO operation. Fundamental understanding of physics processes undergone in the SMART material is gained via fundamental studies comprising dedicated modeling and experiments. The important role of yttrium, stabilizing the SMART alloy microstructure and improving self-passivating behavior, is under investigation. Activities toward industrial up-scale have begun, comprising the first mechanical alloying with an industrial partner and the sintering of a bulk SMART alloy sample with dimensions of 100 mm × 100 mm × 7 mm using an industrial facility. These achievements open the way to further expansion of the SMART technology toward its application in fusion and potentially in other renewable energy sources such as concentrated solar power stations.