Beilstein Journal of Nanotechnology (Jul 2013)

Magnetic anisotropy of graphene quantum dots decorated with a ruthenium adatom

  • Igor Beljakov,
  • Velimir Meded,
  • Franz Symalla,
  • Karin Fink,
  • Sam Shallcross,
  • Wolfgang Wenzel

DOI
https://doi.org/10.3762/bjnano.4.51
Journal volume & issue
Vol. 4, no. 1
pp. 441 – 445

Abstract

Read online

The creation of magnetic storage devices by decoration of a graphene sheet by magnetic transition-metal adatoms, utilizing the high in-plane versus out-of-plane magnetic anisotropy energy (MAE), has recently been proposed. This concept is extended in our density-functional-based modeling study by incorporating the influence of the graphene edge on the MAE. We consider triangular graphene flakes with both armchair and zigzag edges in which a single ruthenium adatom is placed at symmetrically inequivalent positions. Depending on the edge-type, the graphene edge was found to influence the MAE in opposite ways: for the armchair flake the MAE increases close to the edge, while the opposite is true for the zigzag edge. Additionally, in-plane pinning of the magnetization direction perpendicular to the edge itself is observed for the first time.

Keywords