Shanghai Jiaotong Daxue xuebao (Nov 2021)

Fitting Model to Compressive Strength of Composite Laminate After Impact

  • GUAN Qingyu, XIA Pinqi, ZHENG Xiaoling, WU Guanghui

DOI
https://doi.org/10.16183/j.cnki.jsjtu.2020.360
Journal volume & issue
Vol. 55, no. 11
pp. 1459 – 1466

Abstract

Read online

Carbon fiber-reinforced epoxy composites are widely used in the primary structure of aircraft, the compressive strength of which after impact is an important part in the evaluation of damage tolerance. At present, it mainly relies on a large number of tests to obtain compressive strength after impact in the engineering project. Therefore, it is necessary to develop a simple mathematical model to describe the compressive strength law after impact. A novel mathematical model for fitting compressive strength data of composite laminate after impact was proposed. Using the mathematical model and the initial model parameters, the compressive strength data after impact at different impact energy could be converted into some equivalent undamaged compressive strength data. Then, these equivalent undamaged compressive strength data were normally fitted using the maximum-likelihood estimate (MLE) method to obtain the standard deviation of normal distribution. The above steps was repeated until the minimum estimator of standard deviation was obtained. Hence, the best estimators of parameters for the mathematical model were determined. In order to further demonstrate the applicability of the mathematical model, post-impact compressive strength tests including different thicknesses, layup proportion, and material types were conducted, and the experimental data were fitted with the model. The results indicate that the mathematical model has a good applicability to the compressive strength test data after impact including different thicknesses, layup proportions, and material types.

Keywords