Mathematical Biosciences and Engineering (Jan 2024)

A surface defect detection method for steel pipe based on improved YOLO

  • Lili Wang,
  • Chunhe Song,
  • Guangxi Wan,
  • Shijie Cui

DOI
https://doi.org/10.3934/mbe.2024134
Journal volume & issue
Vol. 21, no. 2
pp. 3016 – 3036

Abstract

Read online

Surface defect detection is of great significance as a tool to ensure the quality of steel pipes. The surface defects of steel pipes are charactered by insufficient texture, high similarity between different types of defects, large size differences, and high proportions of small targets, posing great challenges to defect detection algorithms. To overcome the above issues, we propose a novel steel pipe surface defect detection method based on the YOLO framework. First, for the problem of a low detection rate caused by insufficient texture and high similarity among different types of defects of steel pipes, a new backbone block is proposed. By increasing high-order spatial interaction and enhancing the capture of internal correlations of data features, different feature information for similar defects is extracted, thereby alleviating the false detection rate. Second, to enhance the detection performance for small defects, a new neck block is proposed. By fusing multiple features, the accuracy of steel pipe defect detection is improved. Third, for the problem of a low detection rate causing large size differences in steel pipe surface defects, a novel regression loss function that considers the aspect ratio and scale is proposed, and the focal loss is introduced to further solve the sample imbalance problem in steel pipe defect datasets. The experimental results show that the proposed method can effectively improve the accuracy of steel pipe surface defect detection.

Keywords