Journal of Cheminformatics (Dec 2023)

Applying atomistic neural networks to bias conformer ensembles towards bioactive-like conformations

  • Benoit Baillif,
  • Jason Cole,
  • Ilenia Giangreco,
  • Patrick McCabe,
  • Andreas Bender

DOI
https://doi.org/10.1186/s13321-023-00794-w
Journal volume & issue
Vol. 15, no. 1
pp. 1 – 23

Abstract

Read online

Abstract Identifying bioactive conformations of small molecules is an essential process for virtual screening applications relying on three-dimensional structure such as molecular docking. For most small molecules, conformer generators retrieve at least one bioactive-like conformation, with an atomic root-mean-square deviation (ARMSD) lower than 1 Å, among the set of low-energy conformers generated. However, there is currently no general method to prioritise these likely target-bound conformations in the ensemble. In this work, we trained atomistic neural networks (AtNNs) on 3D information of generated conformers of a curated subset of PDBbind ligands to predict the ARMSD to their closest bioactive conformation, and evaluated the early enrichment of bioactive-like conformations when ranking conformers by AtNN prediction. AtNN ranking was compared with bioactivity-unaware baselines such as ascending Sage force field energy ranking, and a slower bioactivity-based baseline ranking by ascending Torsion Fingerprint Deviation to the Maximum Common Substructure to the most similar molecule in the training set (TFD2SimRefMCS). On test sets from random ligand splits of PDBbind, ranking conformers using ComENet, the AtNN encoding the most 3D information, leads to early enrichment of bioactive-like conformations with a median BEDROC of 0.29 ± 0.02, outperforming the best bioactivity-unaware Sage energy ranking baseline (median BEDROC of 0.18 ± 0.02), and performing on a par with the bioactivity-based TFD2SimRefMCS baseline (median BEDROC of 0.31 ± 0.02). The improved performance of the AtNN and TFD2SimRefMCS baseline is mostly observed on test set ligands that bind proteins similar to proteins observed in the training set. On a more challenging subset of flexible molecules, the bioactivity-unaware baselines showed median BEDROCs up to 0.02, while AtNNs and TFD2SimRefMCS showed median BEDROCs between 0.09 and 0.13. When performing rigid ligand re-docking of PDBbind ligands with GOLD using the 1% top-ranked conformers, ComENet ranked conformers showed a higher successful docking rate than bioactivity-unaware baselines, with a rate of 0.48 ± 0.02 compared to CSD probability baseline with a rate of 0.39 ± 0.02. Similarly, on a pharmacophore searching experiment, selecting the 20% top-ranked conformers ranked by ComENet showed higher hit rate compared to baselines. Hence, the approach presented here uses AtNNs successfully to focus conformer ensembles towards bioactive-like conformations, representing an opportunity to reduce computational expense in virtual screening applications on known targets that require input conformations.

Keywords