PLoS ONE (Jan 2015)

Protruding structures on caterpillars are controlled by ectopic Wnt1 expression.

  • Mina Edayoshi,
  • Junichi Yamaguchi,
  • Haruhiko Fujiwara

DOI
https://doi.org/10.1371/journal.pone.0121736
Journal volume & issue
Vol. 10, no. 3
p. e0121736

Abstract

Read online

Spine-like or protruding structures, which may be aposematic for predators, are often observed in multiple segments of lepidopteran larvae (caterpillars). For example, the larvae of the Chinese wheel butterfly, Byasa alcinous, display many protrusions on their backs as a warning that they are toxic. Although these protrusions are formed by an integument lined with single-layered epidermal cells, the molecular mechanisms underlying their formation have remained unclear. In this study, we focused on a spontaneous mutant of the silkworm, Bombyx mori, Knobbed, which shows similar protrusions to B. alcinous and demonstrates that Wnt1 plays a crucial role in the formation of protrusion structures. Using both transgene expression and RNAi-based knockdown approaches, we showed that Wnt1 designates the position where epidermal cells excessively proliferate, leading to the generation of knobbed structures. Furthermore, in the B. alcinous larvae, Wnt1 was also specifically expressed in association with the protrusions. Our results suggest that Wnt1 plays a role in the formation of protrusions on the larval body, and is conserved broadly among diverse species in Lepidoptera.