Applied Sciences (Jan 2022)

Airspace Geofencing and Flight Planning for Low-Altitude, Urban, Small Unmanned Aircraft Systems

  • Joseph Kim,
  • Ella Atkins

DOI
https://doi.org/10.3390/app12020576
Journal volume & issue
Vol. 12, no. 2
p. 576

Abstract

Read online

Airspace geofencing is a key capability for low-altitude Unmanned Aircraft System (UAS) Traffic Management (UTM). Geofenced airspace volumes can be allocated to safely contain compatible UAS flight operations within a fly-zone (keep-in geofence) and ensure the avoidance of no-fly zones (keep-out geofences). This paper presents the application of three-dimensional flight volumization algorithms to support airspace geofence management for UTM. Layered polygon geofence volumes enclose user-input waypoint-based 3-D flight trajectories, and a family of flight trajectory solutions designed to avoid keep-out geofence volumes is proposed using computational geometry. Geofencing and path planning solutions are analyzed in an accurately mapped urban environment. Urban map data processing algorithms are presented. Monte Carlo simulations statistically validate our algorithms, and runtime statistics are tabulated. Benchmark evaluation results in a Manhattan, New York City low-altitude environment compare our geofenced dynamic path planning solutions against a fixed airway corridor design. A case study with UAS route deconfliction is presented, illustrating how the proposed geofencing pipeline supports multi-vehicle deconfliction. This paper contributes to the nascent theory and the practice of dynamic airspace geofencing in support of UTM.

Keywords