Metals (Oct 2016)

An Assessment of the Mechanical Properties and Microstructural Analysis of Dissimilar Material Welded Joint between Alloy 617 and 12Cr Steel

  • Hafiz Waqar Ahmad,
  • Jeong Ho Hwang,
  • Ju Hwa Lee,
  • Dong Ho Bae

DOI
https://doi.org/10.3390/met6100242
Journal volume & issue
Vol. 6, no. 10
p. 242

Abstract

Read online

The most effective method to reduce CO2 gas emission from the steam power plant is to improve its performance by elevating the steam temperature to more than 700 °C. For this, it is necessary to develop applicable materials at high temperatures. Ni-based Alloy 617 and 12Cr steel are used in steam power plants, due to their remarkable mechanical properties, high corrosion resistance, and creep strength. However, since Alloy 617 and 12Cr steel have different chemical compositions and thermal and mechanical properties, it is necessary to develop dissimilar material welding technologies. Moreover, in order to guarantee the reliability of dissimilar material welded structures, the assessment of mechanical and metallurgical properties, fatigue strength, fracture mechanical analysis, and welding residual stress analysis should be conducted on dissimilar material welded joints. In this study, first, multi-pass dissimilar material welding between Alloy 617 and 12Cr steel was performed under optimum welding conditions. Next, mechanical properties were assessed, including the static tensile strength, hardness distribution, and microstructural analysis of a dissimilar material welded joint. The results indicated that the yield strength and tensile strength of the dissimilar metal welded joint were higher than those of the Alloy 617 base metal, and lower than those of the 12Cr steel base metal. The hardness distribution of the 12Cr steel side was higher than that of Alloy 617 and the dissimilar material weld metal zone. It was observed that the microstructure of Alloy 617 HAZ was irregular austenite grain, while that of 12Cr steel HAZ was collapsed martensite grain, due to repeatable heat input during multi-pass welding.

Keywords