Sensors (Jul 2023)

Heart Rate Estimation from Facial Image Sequences of a Dual-Modality RGB-NIR Camera

  • Wen-Nung Lie,
  • Dao-Quang Le,
  • Chun-Yu Lai,
  • Yu-Shin Fang

DOI
https://doi.org/10.3390/s23136079
Journal volume & issue
Vol. 23, no. 13
p. 6079

Abstract

Read online

This paper presents an RGB-NIR (Near Infrared) dual-modality technique to analyze the remote photoplethysmogram (rPPG) signal and hence estimate the heart rate (in beats per minute), from a facial image sequence. Our main innovative contribution is the introduction of several denoising techniques such as Modified Amplitude Selective Filtering (MASF), Wavelet Decomposition (WD), and Robust Principal Component Analysis (RPCA), which take advantage of RGB and NIR band characteristics to uncover the rPPG signals effectively through this Independent Component Analysis (ICA)-based algorithm. Two datasets, of which one is the public PURE dataset and the other is the CCUHR dataset built with a popular Intel RealSense D435 RGB-D camera, are adopted in our experiments. Facial video sequences in the two datasets are diverse in nature with normal brightness, under-illumination (i.e., dark), and facial motion. Experimental results show that the proposed method has reached competitive accuracies among the state-of-the-art methods even at a shorter video length. For example, our method achieves MAE = 4.45 bpm (beats per minute) and RMSE = 6.18 bpm for RGB-NIR videos of 10 and 20 s in the CCUHR dataset and MAE = 3.24 bpm and RMSE = 4.1 bpm for RGB videos of 60-s in the PURE dataset. Our system has the advantages of accessible and affordable hardware, simple and fast computations, and wide realistic applications.

Keywords