Mathematical Biosciences and Engineering (Apr 2024)

Bayesian inverse problem for a fractional diffusion model of cell migration

  • Francisco Julian Ariza-Hernandez ,
  • Juan Carlos Najera-Tinoco,
  • Martin Patricio Arciga-Alejandre ,
  • Eduardo Castañeda-Saucedo,
  • Jorge Sanchez-Ortiz

DOI
https://doi.org/10.3934/mbe.2024257
Journal volume & issue
Vol. 21, no. 4
pp. 5826 – 5837

Abstract

Read online

In the present work, both direct and inverse problems are considered for a Fisher-type fractional diffusion equation, which is proposed to describe the phenomenon of cell migration. For the direct problem, a solution is given via the Fourier method and the Laplace transform. On the other hand, we solved the inverse problem from a Bayesian statistical framework using a set of data that are the result of a cell migration experiment on a wound closure assay. We estimated the parameters of the mathematical model via Markov Chain Monte Carlo methods.

Keywords