Cells (Mar 2020)
Muscle Progenitors Derived from Extraocular Muscles Express Higher Levels of Neurotrophins and their Receptors than other Cranial and Limb Muscles
Abstract
Extraocular muscles (EOMs) show resistance to muscle dystrophies and sarcopenia. It has been recently demonstrated that they are endowed with different types of myogenic cells, all of which present an outstanding regenerative potential. Neurotrophins are important modulators of myogenic regeneration and act promoting myoblast proliferation, enhancing myogenic fusion rates and protecting myotubes from inflammatory stimuli. Here, we adapted the pre-plate cell isolation technique to obtain myogenic progenitors from the rat EOMs, and quantified their in vitro expression of neurotrophins and their receptors by RT−qPCR and immunohistochemistry, respectively. The results were compared with the expression on progenitors isolated from buccinator, tongue and limb muscles. Our quantitative analysis of brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF) and neurotrophin-3 (NT-3) transcripts showed, for the first time, that EOMs-derived cells express more of these factors and that they expressed TrkA, but not TrkB and TrkC receptors. On the contrary, the immunofluorescence analysis demonstrated high expression of p75NTR on all myogenic progenitors, with the EOMs-derived cells showing higher expression. Taken together, these results suggest that the intrinsic trophic differences between EOMs-derived myogenic progenitors and their counterparts from other muscles could explain why those cells show higher proliferative and fusion rates, as well as better regenerative properties.
Keywords