Jin'gangshi yu moliao moju gongcheng (Feb 2022)
Research present situation of machining deformation of ultra-thin dicing blades
Abstract
The ultra-thin dicing blades are prone to radial machining deformation during work. The research status of machining deformation of ultra-thin dicing blades is summarized from theoretical analysis of stress and deformation, finite element simulation analysis and experimental research. In addition, the existing problems are analyzed, and the related research results of grinding wheels and circular saw blades with similar structures are introduced. The results show that: the research on the influence of the cutting blade rotation speed on the deformation of the ultra-thin dicing blade is relatively systematic, but there is still a certain gap in the related researches on the influences of the grinding depth and the feed speed. Meanwhile, the lack of measurement methods when cutting into the workpiece also limits the further research. Therefore, the theoretical formula still needs to be constantly improved, and the finite element simulation should be fully applied, so as to optimize and compensate the deformation of ultra-thin dicing blades and improve the machining accuracy of workpieces.
Keywords