Breast Cancer: Targets and Therapy (May 2012)
New developments in the treatment of HER2-positive breast cancer
Abstract
Rita NahtaDepartments of Pharmacology and Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USAAbstract: Approximately 20%–30% of metastatic breast cancers show increased expression of the human epidermal growth factor receptor-2 (HER2) tyrosine kinase. Two HER2-specific therapies are currently approved for clinical treatment of patients with HER2-overexpressing metastatic breast cancer. Trastuzumab is a monoclonal antibody against HER2 and is approved for first-line treatment of HER2-positive metastatic breast cancer. Lapatinib is a small molecule dual inhibitor of epidermal growth factor receptor and HER2 tyrosine kinases, and is approved for trastuzumab-refractory disease. Although trastuzumab is a highly effective therapy for patients with HER2-overexpressing metastatic breast cancer, a significant number of patients in the initial clinical trials of trastuzumab monotherapy showed resistance to trastuzumab-based therapy. Further, among those who did respond, the initial trials indicated that the median time to progression was less than 1 year. Similarly, lapatinib is effective in a subset of trastuzumab-refractory cases, but the majority of patients display resistance. This review discusses the multiple molecular mechanisms of resistance that have been proposed in the literature. In addition, novel agents that are being tested for efficacy against HER2-positive breast cancer, including the antibodies pertuzumab and trastuzumab-DM1 and the immunotoxin affitoxin, are reviewed. The introduction of trastuzumab has revolutionized the clinical care of patients with HER2-positive metastatic breast cancer and has resulted in dramatic reductions in recurrences of early-stage HER2-positive breast cancer. The development and implementation of gene- and protein-based assays that measure potential molecular predictors of trastuzumab resistance will allow individualization of HER2-targeted therapeutic approaches, and may ultimately improve treatment of HER2-positive breast cancer.Keywords: ErbB2, Herceptin, trastuzumab, drug resistance, neratinib, lapatinib, affitoxin