Advances in Radiation Oncology (Nov 2021)
Implementation of a Knowledge-Based Treatment Planning Model for Cardiac-Sparing Lung Radiation Therapy
Abstract
Purpose: High radiation doses to the heart have been correlated with poor overall survival in patients receiving radiation therapy for stage III non-small cell lung cancer (NSCLC). We built a knowledge-based planning (KBP) tool to limit the dose to the heart during creation of volumetric modulated arc therapy (VMAT) treatment plans for patients being treated to 60 Gy in 30 fractions for stage III NSCLC. Methods and Materials: A previous study at our institution retrospectively delineated intracardiac volumes and optimized VMAT treatment plans to reduce dose to these substructures and to the whole heart. Two RapidPlan (RP) KBP models were built from this cohort, 1 model using the clinical plans and a separate model using the cardiac-optimized plans. Using target volumes and 6 organs at risk (OARs), models were trained to generate treatment plans in a semiautomated process. The cardiac-sparing KBP model was tested in the same cohort used for training, and both models were tested on an external validation cohort of 30 patients. Results: Both RP models produced clinically acceptable plans in terms of target coverage, dose uniformity, and dose to OARs. Compared with the previously created cardiac-optimized plans, cardiac-sparing RPs showed significant reductions in the mean dose to the esophagus and lungs while performing similarly or better in all evaluated heart dose metrics. When comparing the 2 models, the cardiac-sparing RP showed reduced (P < .05) heart mean and maximum doses as well as volumes receiving 60 Gy, 50 Gy, and 30 Gy. Conclusions: By using a set of cardiac-optimized treatment plans for training, the proposed KBP model provided a means to reduce the dose to the heart and its substructures without the need to explicitly delineate cardiac substructures. This tool may offer reduced planning time and improved plan quality and might be used to improve patient outcomes.