Comptes Rendus. Mathématique (Sep 2020)

Convex $C^1$ extensions of $1$-jets from compact subsets of Hilbert spaces

  • Azagra, Daniel,
  • Mudarra, Carlos

DOI
https://doi.org/10.5802/crmath.62
Journal volume & issue
Vol. 358, no. 5
pp. 551 – 556

Abstract

Read online

Let $X$ denote a Hilbert space. Given a compact subset $K$ of $X$ and two continuous functions $f:K\rightarrow \mathbb{R}$, $G:K\rightarrow X$, we show that a necessary and sufficient condition for the existence of a convex function $F\in C^1(X)$ such that $F=f$ on $K$ and $\nabla F=G$ on $K$ is that the $1$-jet $(f, G)$ satisfies:(1) $f(x)\ge f(y)+ \langle G(y), x-y\rangle $ for all $x, y\in K$, and(2) if $x, y\in K$ and $f(x)= f(y)+ \langle G(y),\, x-y\rangle $ then $G(x)=G(y)$.We also solve a similar problem for $K$ replaced with an arbitrary bounded subset of $X$, and for $C^1(X)$ replaced with the class $C^{1,u}_{b}(X)$ of differentiable functions with uniformly continuous derivatives on bounded subsets of $X$.