Journal of Materials Research and Technology (Nov 2021)

Evaluation of flexural properties and characterisation of 10-mm thin geopolymer based on fly ash and ladle furnace slag

  • Ng Yong-Sing,
  • Liew Yun-Ming,
  • Heah Cheng-Yong,
  • Mohd Mustafa Al Bakri Abdullah,
  • Lynette Wei Ling Chan,
  • Ng Hui-Teng,
  • Ong Shee-Ween,
  • Ooi Wan-En,
  • Hang Yong-Jie

Journal volume & issue
Vol. 15
pp. 163 – 176

Abstract

Read online

The formulation and flexural properties of thin fly ash geopolymers with thickness of merely 10 mm and replacement of ladle furnace slag to fly ash in thin geopolymer were presented. The formulation was discussed in terms of NaOH molarity, solid aluminosilicates-to-liquid alkali activator (S/L) mass ratio, and alkali activator (Na2SiO3/NaOH) mass ratio. Thin fly ash geopolymers with flexural strength and Young's modulus of 6.2 MPa and 0.14 GPa, respectively, were obtained by using 12 M NaOH, S/L ratio of 2.5 and Na2SiO3/NaOH ratio of 4.0. A high Na2SiO3/NaOH ratio was implemented for thin geopolymer synthesis to produce a more viscous slurry which helped to retain the shape of a thin geopolymer. The incorporation of ladle furnace slag up to 40 wt.% reported an increment of 26% in flexural strength up to 7.8 MPa as compared to pure fly ash geopolymers and the stiffness was increased to 0.19 GPa. Denser microstructure with improved compactness was observed as the ladle furnace slag acted as the filler. New crystalline phases of calcium silicate hydrate (C–S–H) were formed and coexisted with the geopolymer matrix, which consequently enhanced the flexural strength of thin fly ash geopolymer. This proved that the ladle furnace slag has the potential to be utilised in geopolymer synthesis and will enhance the flexural properties of thin geopolymers. The flexural performance of thin geopolymers in this study was considerably good as the thin geopolymers exhibited comparatively similar flexural strengths, but a higher strength/thickness ratio as compared to geopolymers with thickness greater than 40 mm.

Keywords