Naučno-tehničeskij Vestnik Informacionnyh Tehnologij, Mehaniki i Optiki (Apr 2024)

On the properties of M-estimators optimizing weighted L2-norm of the influence function

  • Daniil V. Lisitsin,
  • Konstantin V. Gavrilov

DOI
https://doi.org/10.17586/2226-1494-2024-24-2-267-275
Journal volume & issue
Vol. 24, no. 2
pp. 267 – 275

Abstract

Read online

The work develops the theory of stable M-estimators belonging to the class of redescending estimators, having the property of resistance to asymmetric contamination. Many well-known redescending estimators can be obtained within the framework of the locally stable approach of A.M. Shurygin, based on the analysis of the estimator instability functional (L2-norm of the influence function), or his approach based on the model of a series of samples with random point contamination (point Bayesian contamination model). These approaches are convenient for constructing various stable M-estimators and, in comparison with classical robust procedures, provide wider opportunities. The family of conditionally optimal estimators proposed by A.M. Shurygin within the framework of the first of the listed approaches can be defined as optimizing the asymptotic dispersion under a constraint on the value of instability. The corresponding problem can be represented in the form of optimization of the weighted L2-norm of the influence function. The second approach considers a specially formed nonparametric neighborhood of the model distribution, and it can also be reduced to the analysis of the weighted L2-norm of the influence function. Thus, this estimation quality criterion is quite general and useful for constructing robust estimators. The theory of estimators that are optimal in terms of weighted L2-norm of the influence function is currently underdeveloped. Specifically, for the corresponding families of estimators, the question of the uniqueness of family members remains unresolved. The question comes down to studying the convexity (concavity) of the optimized functional depending on the parameter defining the family. In the presented work, an expression is obtained in general form for the derivative with respect to the parameter of the quality functional of the optimal estimator. Inequalities are obtained for the second derivative necessary to establish its convexity (concavity) with respect to the parameter. Corollaries from these results are applied to describe the properties of a conditionally optimal family. The influence functions of a number of conditionally optimal estimators for the shift and scale parameters of the normal model are constructed. The characteristics of these estimators are studied. The stability of most of the considered estimators is shown, which is important for their practical application. The theoretical results obtained can be useful in studying the properties of compromise estimators based on two criteria as well as in studying minimax contamination levels within the framework of A.M. Shurygin’s point Bayesian contamination model. The results of the work can be used in situations of purposed data corruption by an adversary including the problems related to adversarial machine learning.

Keywords