Current Research in Microbial Sciences (Jan 2025)

Evaluation and identification of metabolites produced by Cytobacillus firmus in the interaction with Arabidopsis thaliana plants and their effect on Solanum lycopersicum

  • Itzel G. Arteaga-Ríos,
  • Karen Beatriz Méndez-Rodríguez,
  • Raul Ocampo-Pérez,
  • María de la Luz Guerrero-González,
  • Raúl Rodríguez-Guerra,
  • Pablo Delgado-Sánchez

Journal volume & issue
Vol. 8
p. 100312

Abstract

Read online

Currently, the use of bio-inputs is increasing due to the need to reduce the use of agrochemicals. However, one of the limitations is to preserve the viability of the living microorganisms, so it is important to find an alternative that allows us to obtain different metabolites to produce it. We evaluated three different interactions (contact, diffusible and volatile compounds) in vitro in Arabidopsis thaliana (At) seedlings with the strain Cytobacillus firmus M10 and its filtered secondary metabolites (M10F). The results showed that the seedlings inoculated by contact with the filtrate (AtM10F) presented increases in root length (30 %) and leaf area (33 %), as well as in the volatile interaction (At/M10F) with respect to the uninoculated treatment. For both interactions, the seedlings inoculated with the bacteria by contact (AtM10) and volatile (At/M10) obtained greater biomass (48 and 57 %). Subsequently, an evaluation at the end of the A. thaliana cycle showed that the treatments obtained by contact and distance when reinoculated with the bacteria and the filtrate (AtM10, At-M10 and AtM10F) obtained 50 % more seed yield than the control treatment, while AtM10F presented 72 %, while At/M10F presented the highest no. of siliques and seeds, which increased the yield by 65 %. In the Solanum lycopersicum (Sl) experiment, the filtrate (SlM10F) showed significant differences in seedling height, leaf length and width (23, 24 and 36 %, respectively). It also promoted an increase in fresh and dry weight, producing a greater root area and larger leaves compared to the control (Sl) and the bacteria (SlM10). We performed a qualitative characterization of the secondary metabolites present in the filtrate, where we found 2,4-DTBP, sylvopinol, isophthaladehyde, and eicosane of interest with possible growth-promoting effects on A. thaliana and tomato. We identified volatile compounds present in plant-microorganism and plant-filtrate interactions as possible precursors in the induction of plant growth, among which phenols, alcohols, aldehydes, alkanes, and alkenes stand out. Most of the analyzed compounds have not been found in the literature with reports of growth promoters, is important to mention that due to their characteristic functional groups they can derive and trigger the synthesis of new molecules with agronomic application.

Keywords