Agronomy (Jul 2022)

Impacts of Biochar on Hydro-Physical Properties of Sandy Soil under Different Irrigation Regimes for Enhanced Tomato Growth

  • Abdulaziz G. Alghamdi,
  • Abdulrasoul Al-Omran,
  • Arafat Alkhasha,
  • Abdulaziz R. Alharbi

DOI
https://doi.org/10.3390/agronomy12081762
Journal volume & issue
Vol. 12, no. 8
p. 1762

Abstract

Read online

The performance of biochar application in water conservation, salt distribution, water infiltration, and tomato growth was evaluated under regulated deficit irrigation (RDI) (40%, 60% and 80% of ETc) and partial root drying (PRD) systems by using different quality irrigation water. Date palm derived biochar was applied to sandy soil at 4% (w/w) in pots, and tomato was grown as the test crop under greenhouse conditions. The results indicated that soil moisture was decreased by 27.38% to 24.95% without biochar application at different levels of irrigation, whereas it increased by 8.11% and 5.48% with biochar application, compared with control treatment of 100% of ETc. Soil moisture was decreased by 12.78%, 15.82% and 12.78% for the 1st stage, 2nd stage and 3rd growth stage, respectively, while it increased by 37.93% at the 4th growth stage compared with full irrigation. Soil salinity ranged between 0.5 and 1.4 dS·m−1 with biochar application, while 0.7–2.1 dS·m−1. Cumulative infiltration at one minute varied between 1.89 and 2.79 cm and 1.74 and 2.79 cm for biochar and non-biochar treatments, respectively. Infiltration rate varied from 0.98 to 2.63 cm min−1 and 1.48 to 1.68 cm·min−1 for fresh and saline water, respectively. Overall, the results revealed that biochar application substantially improved the characteristics of sandy soil, subsequently resulting in water conservation.

Keywords