Drones (Mar 2024)

Generalized Labeled Multi-Bernoulli Filter-Based Passive Localization and Tracking of Radiation Sources Carried by Unmanned Aerial Vehicles

  • Jun Zhao,
  • Renzhou Gui,
  • Xudong Dong

DOI
https://doi.org/10.3390/drones8030096
Journal volume & issue
Vol. 8, no. 3
p. 96

Abstract

Read online

This paper discusses a key technique for passive localization and tracking of radiation sources, which obtains the motion trajectory of radiation sources carried by unmanned aerial vehicles (UAVs) by continuously or periodically localizing it without the active participation of the radiation sources. However, the existing methods have some limitations in complex signal environments and non-stationary wireless propagation that impact the accuracy of localization and tracking. To address these challenges, this paper extends the δ-generalized labeled multi-Bernoulli (GLMB) filter to the scenario of passive localization and tracking based on the random finite-set (RFS) framework and provides the extended Kalman filter (EKF) and unscented Kalman filter (UKF) implementations of the δ-GLMB filter, which fully take into account the nonlinear motion of the radiation source. By modeling the “obstacle scenario” and the influence of external factors (e.g., weather, terrain), our proposed GLMB filter can accurately track the target and capture its motion trajectory. Simulation results verify the effectiveness of the GLMB filter in target identification and state tracking.

Keywords