Applied Sciences (Nov 2021)

Intelligent Prediction of Aeroengine Wear Based on the SVR Optimized by GMPSO

  • Bo Zheng,
  • Feng Gao,
  • Xin Ma,
  • Xiaoqiang Zhang

DOI
https://doi.org/10.3390/app112210592
Journal volume & issue
Vol. 11, no. 22
p. 10592

Abstract

Read online

In order to predict aeroengine wear accurately and automatically, as a predictor, support vector regression (SVR) was optimized by means of particle swarm optimization (PSO). The guided mutation strategy of PSO (GMPSO) is presented herein to determine the proper structure parameters of an SVR, as well as the embedding dimensions of the training samples. The guided mutation strategy was able to increase the diversity of particles and improve the probability of finding the global extremum. Furthermore, single-step and multi-step prediction methods were designed to meet different accuracy requirements. A prediction comparison study on spectral analysis data was carried out, and the contrast experiments show that compared with SVR optimized by means of a traditional PSO, a neural network and an auto regressive moving average (ARMA) prediction model, the SVR optimized by means of the GMPSO approach produced prediction results not only with higher accuracy, but also with better consistency.

Keywords