Agronomy (Mar 2021)

Genotype by Environment Interaction Analysis of Agronomic Spring Barley Traits in Iceland Using AMMI, Factorial Regression Model and Linear Mixed Model

  • Hrannar Smári Hilmarsson,
  • Simon Rio,
  • Julio Isidro y Sánchez

DOI
https://doi.org/10.3390/agronomy11030499
Journal volume & issue
Vol. 11, no. 3
p. 499

Abstract

Read online

Spring barley (Hordeum vulgare L.) is the most important cereal in Iceland and its national breeding program aims to select barley genotypes adapted to its environment. A critical step to understand the adaptation of Nordic barley material to a cool maritime climate is to assess the genotype by environment interaction (GxE). In this study, we evaluated the yield and thousand-kernel weight (TKW) of 32 spring barley genotypes in seven Icelandic environments. We applied three methods to analyze GxE: the additive main effects and multiplicative interaction model, a factorial model, and a linear mixed model. For yield, GxE was mainly caused by a better response of six-row genotypes compared to two-row genotypes in high fertility soils. For TKW, GxE showed a pattern along a gradient of daily mean temperatures. This pattern translated into a divergent TKW response between the 2-row and 6-row genotypes, with substantial crossovers along the temperature gradient. This GxE pattern was disentangled using all three methods, illustrating the value of cross-analysis. As yield is the main trait of interest for barley cultivation in Iceland, and few crossovers of genotype performance have been observed between environments, the definition of one mega-environment was recommended for Icelandic cultivation and breeding. We identified promising genetic material for both traits and highlighted the superiority of six-row genotypes for yield.

Keywords