COMMD10-Guided Phagolysosomal Maturation Promotes Clearance of Staphylococcus aureus in Macrophages
Shani Ben Shlomo,
Odelia Mouhadeb,
Keren Cohen,
Chen Varol,
Nathan Gluck
Affiliations
Shani Ben Shlomo
The Research Center for Digestive Tract and Liver Diseases, Tel-Aviv Sourasky Medical Center and Sackler School of Medicine, Tel-Aviv University, 6 Weizmann St, Tel-Aviv 64239, Israel
Odelia Mouhadeb
The Research Center for Digestive Tract and Liver Diseases, Tel-Aviv Sourasky Medical Center and Sackler School of Medicine, Tel-Aviv University, 6 Weizmann St, Tel-Aviv 64239, Israel; Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
Keren Cohen
The Research Center for Digestive Tract and Liver Diseases, Tel-Aviv Sourasky Medical Center and Sackler School of Medicine, Tel-Aviv University, 6 Weizmann St, Tel-Aviv 64239, Israel; Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
Chen Varol
The Research Center for Digestive Tract and Liver Diseases, Tel-Aviv Sourasky Medical Center and Sackler School of Medicine, Tel-Aviv University, 6 Weizmann St, Tel-Aviv 64239, Israel; Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel; Corresponding author
Nathan Gluck
The Research Center for Digestive Tract and Liver Diseases, Tel-Aviv Sourasky Medical Center and Sackler School of Medicine, Tel-Aviv University, 6 Weizmann St, Tel-Aviv 64239, Israel; Corresponding author
Summary: Staphylococcus aureus is a major cause of infectious disease. Liver Kupffer cells (KCs) are responsible for sequestering and destroying S. aureus through the phagolysosomal pathway. Proteins belonging to the COMMD family emerge as key intracellular regulators of protein trafficking, but the role of COMMD10 in macrophage-mediated S. aureus eradication is unknown. Here we report that COMMD10 in macrophages was necessary for its timely elimination, as demonstrated with two different S. aureus subspecies. In vivo, COMMD10-deficient liver KCs exhibited impaired clearance of systemic S. aureus infection. S. aureus-infected COMMD10-deficient macrophages exhibited impaired activation of the transcription factor EB, resulting in reduced lysosomal biogenesis. Moreover, S. aureus-initiated phagolysosomal maturation and function were significantly attenuated in COMMD10-deficient macrophages. Finally, expression of COMMD/CCDC22/CCDC93 complex, linked to phagolysosomal maturation, was reduced by COMMD10 deficiency. Collectively, these results support an important role for COMMD10 in instructing macrophage phagolysosomal biogenesis and maturation during S. aureus infection. : Biological Sciences; Immunology; Microbiology; Molecular Microbiology Subject Areas: Biological Sciences, Immunology, Microbiology, Molecular Microbiology