Seaweed Essential Oils as a New Source of Bioactive Compounds for Cyanobacteria Growth Control: Innovative Ecological Biocontrol Approach
Soukaina El Amrani Zerrifi,
Fatima El Khalloufi,
Richard Mugani,
Redouane El Mahdi,
Ayoub Kasrati,
Bouchra Soulaimani,
Lillian Barros,
Isabel C. F. R. Ferreira,
Joana S. Amaral,
Tiane Cristine Finimundy,
Abdelaziz Abbad,
Brahim Oudra,
Alexandre Campos,
Vitor Vasconcelos
Affiliations
Soukaina El Amrani Zerrifi
Water, Biodiversity and Climate Change Laboratory, Phycology, Biotechnology and Environmental Toxicology Research Unit, Faculty of Sciences Semlalia Marrakech, Cadi Ayyad University, P.O. Box 2390, 40000 Marrakech, Morocco
Fatima El Khalloufi
Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty of Khouribga, Sultan Moulay Slimane University of Beni Mellal, P.B. 145, 25000 Khouribga, Morocco
Richard Mugani
Water, Biodiversity and Climate Change Laboratory, Phycology, Biotechnology and Environmental Toxicology Research Unit, Faculty of Sciences Semlalia Marrakech, Cadi Ayyad University, P.O. Box 2390, 40000 Marrakech, Morocco
Redouane El Mahdi
Water, Biodiversity and Climate Change Laboratory, Phycology, Biotechnology and Environmental Toxicology Research Unit, Faculty of Sciences Semlalia Marrakech, Cadi Ayyad University, P.O. Box 2390, 40000 Marrakech, Morocco
Ayoub Kasrati
Department of Health and Agro-Industry Engineering, High School of Engineering and Innovation of Marrakesh (E2IM), Private University of Marrakesh (UPM), 42312 Marrakech, Morocco
Bouchra Soulaimani
Laboratory of Microbial Biotechnologies, Agrosciences and Environment, Faculty of Science Semlalia Marrakech, Cadi Ayyad University, P.O. Box 2390, 40000 Marrakech, Morocco
Lillian Barros
Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
Isabel C. F. R. Ferreira
Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
Joana S. Amaral
Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
Tiane Cristine Finimundy
Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
Abdelaziz Abbad
Laboratory of Microbial Biotechnologies, Agrosciences and Environment, Faculty of Science Semlalia Marrakech, Cadi Ayyad University, P.O. Box 2390, 40000 Marrakech, Morocco
Brahim Oudra
Water, Biodiversity and Climate Change Laboratory, Phycology, Biotechnology and Environmental Toxicology Research Unit, Faculty of Sciences Semlalia Marrakech, Cadi Ayyad University, P.O. Box 2390, 40000 Marrakech, Morocco
Alexandre Campos
CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
Vitor Vasconcelos
CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
The application of natural compounds extracted from seaweeds is a promising eco-friendly alternative solution for harmful algae control in aquatic ecosystems. In the present study, the anti-cyanobacterial activity of three Moroccan marine macroalgae essential oils (EOs) was tested and evaluated on unicellular Microcystis aeruginosa cyanobacterium. Additionally, the possible anti-cyanobacterial response mechanisms were investigated by analyzing the antioxidant enzyme activities of M. aeruginosa cells. The results of EOs GC–MS analyses revealed a complex chemical composition, allowing the identification of 91 constituents. Palmitic acid, palmitoleic acid, and eicosapentaenoic acid were the most predominant compounds in Cystoseira tamariscifolia, Sargassum muticum, and Ulva lactuca EOs, respectively. The highest anti-cyanobacterial activity was recorded for Cystoseira tamariscifolia EO (ZI = 46.33 mm, MIC = 7.81 μg mL−1, and MBC = 15.62 μg mL−1). The growth, chlorophyll-a and protein content of the tested cyanobacteria were significantly reduced by C. tamariscifolia EO at both used concentrations (inhibition rate >67% during the 6 days test period in liquid media). Furthermore, oxidative stress caused by C. tamariscifolia EO on cyanobacterium cells showed an increase of the activities of superoxide dismutase (SOD) and catalase (CAT), and malondialdehyde (MDA) concentration was significantly elevated after 2 days of exposure. Overall, these experimental findings can open a promising new natural pathway based on the use of seaweed essential oils to the fight against potent toxic harmful cyanobacterial blooms (HCBs).