iScience (Sep 2023)
EpiGe: A machine-learning strategy for rapid classification of medulloblastoma using PCR-based methyl-genotyping
- Soledad Gómez-González,
- Joshua Llano,
- Marta Garcia,
- Alicia Garrido-Garcia,
- Mariona Suñol,
- Isadora Lemos,
- Sara Perez-Jaume,
- Noelia Salvador,
- Nagore Gene-Olaciregui,
- Raquel Arnau Galán,
- Vicente Santa-María,
- Marta Perez-Somarriba,
- Alicia Castañeda,
- José Hinojosa,
- Ursula Winter,
- Francisco Barbosa Moreira,
- Fabiana Lubieniecki,
- Valeria Vazquez,
- Jaume Mora,
- Ofelia Cruz,
- Andrés Morales La Madrid,
- Alexandre Perera,
- Cinzia Lavarino
Affiliations
- Soledad Gómez-González
- Laboratory of Developmental Tumor Biology, Institut de Recerca Sant Joan de Déu, Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Barcelona, Spain; Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- Joshua Llano
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain; B2SLab, Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial, Universitat Politècnica de Catalunya, Barcelona, Spain; Networking Biomedical Research Centre in the Subject Area of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Marta Garcia
- Laboratory of Developmental Tumor Biology, Institut de Recerca Sant Joan de Déu, Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Barcelona, Spain; Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- Alicia Garrido-Garcia
- Laboratory of Developmental Tumor Biology, Institut de Recerca Sant Joan de Déu, Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Barcelona, Spain; Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- Mariona Suñol
- Department of Pathology, Hospital Sant Joan de Déu, Barcelona, Spain
- Isadora Lemos
- Laboratory of Molecular Oncology, Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Barcelona, Spain
- Sara Perez-Jaume
- Laboratory of Developmental Tumor Biology, Institut de Recerca Sant Joan de Déu, Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Barcelona, Spain; Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- Noelia Salvador
- Laboratory of Molecular Oncology, Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Barcelona, Spain
- Nagore Gene-Olaciregui
- Laboratory of Molecular Oncology, Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Barcelona, Spain
- Raquel Arnau Galán
- Department of Pathology, Hospital Sant Joan de Déu, Barcelona, Spain
- Vicente Santa-María
- Neuro Oncology Unit, Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Barcelona, Spain
- Marta Perez-Somarriba
- Children & Young People’s Unit, The Royal Marsden NHS Foundation Trust, London, UK
- Alicia Castañeda
- Pediatric Solid Tumor Unit, Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Barcelona, Spain
- José Hinojosa
- Department of Neurosurgery, Hospital Sant Joan de Déu, Barcelona, Spain
- Ursula Winter
- Department of Pathology, Pediatric Hospital S.A.M.I.C. Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
- Francisco Barbosa Moreira
- Department of Pathology, Pediatric Hospital S.A.M.I.C. Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
- Fabiana Lubieniecki
- Department of Pathology, Pediatric Hospital S.A.M.I.C. Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
- Valeria Vazquez
- Department of Pathology, Pediatric Hospital S.A.M.I.C. Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
- Jaume Mora
- Laboratory of Developmental Tumor Biology, Institut de Recerca Sant Joan de Déu, Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Barcelona, Spain; Pediatric Solid Tumor Unit, Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Barcelona, Spain
- Ofelia Cruz
- Neuro Oncology Unit, Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Barcelona, Spain
- Andrés Morales La Madrid
- Neuro Oncology Unit, Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Barcelona, Spain
- Alexandre Perera
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain; B2SLab, Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial, Universitat Politècnica de Catalunya, Barcelona, Spain; Networking Biomedical Research Centre in the Subject Area of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Cinzia Lavarino
- Laboratory of Developmental Tumor Biology, Institut de Recerca Sant Joan de Déu, Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Barcelona, Spain; Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain; Laboratory of Molecular Oncology, Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Barcelona, Spain; Corresponding author
- Journal volume & issue
-
Vol. 26,
no. 9
p. 107598
Abstract
Summary: Molecular classification of medulloblastoma is critical for the treatment of this brain tumor. Array-based DNA methylation profiling has emerged as a powerful approach for brain tumor classification. However, this technology is currently not widely available. We present a machine-learning decision support system (DSS) that enables the classification of the principal molecular groups—WNT, SHH, and non-WNT/non-SHH—directly from quantitative PCR (qPCR) data. We propose a framework where the developed DSS appears as a user-friendly web-application—EpiGe-App—that enables automated interpretation of qPCR methylation data and subsequent molecular group prediction. The basis of our classification strategy is a previously validated six-cytosine signature with subgroup-specific methylation profiles. This reduced set of markers enabled us to develop a methyl-genotyping assay capable of determining the methylation status of cytosines using qPCR instruments. This study provides a comprehensive approach for rapid classification of clinically relevant medulloblastoma groups, using readily accessible equipment and an easy-to-use web-application.t