Beilstein Journal of Nanotechnology (May 2013)

A highly pH-sensitive nanowire field-effect transistor based on silicon on insulator

  • Denis E. Presnov,
  • Sergey V. Amitonov,
  • Pavel A. Krutitskii,
  • Valentina V. Kolybasova,
  • Igor A. Devyatov,
  • Vladimir A. Krupenin,
  • Igor I. Soloviev

DOI
https://doi.org/10.3762/bjnano.4.38
Journal volume & issue
Vol. 4, no. 1
pp. 330 – 335

Abstract

Read online

Background: An experimental and theoretical study of a silicon-nanowire field-effect transistor made of silicon on insulator by CMOS-compatible methods is presented.Results: A maximum Nernstian sensitivity to pH change of 59 mV/pH was obtained experimentally. The maximum charge sensitivity of the sensor was estimated to be on the order of a thousandth of the electron charge in subthreshold mode.Conclusion: The sensitivity obtained for our sensor built in the CMOS-compatible top-down approach does not yield to the one of sensors built in bottom-up approaches. This provides a good background for the development of CMOS-compatible probes with primary signal processing on-chip.

Keywords