Heliyon (Jan 2024)

Effects of N6-methyladenosine modification on metabolic reprogramming in digestive tract tumors

  • Liang Yu,
  • Yuan Gao,
  • Qiongling Bao,
  • Min Xu,
  • Juan Lu,
  • Weibo Du

Journal volume & issue
Vol. 10, no. 2
p. e24414

Abstract

Read online

N6-methyladenosine (m6A), the most abundant RNA modification within cells, participates in various biological and pathological processes, including self-renewal, invasion and proliferation, drug resistance, and stem cell characteristics. The m6A methylation plays a crucial role in tumors by regulating multiple RNA processes such as transcription, processing, and translation. Three protein types are primarily involved in m6A methylation: methyltransferases (such as METTL3, METTL14, ZC3H13, and KIAA1429), demethylases (such as FTO, ALKBH5), and RNA-binding proteins (such as the family of YTHDF, YTHDC1, YTHDC2, and IGF2BPs). Various metabolic pathways are reprogrammed in digestive tumors to meet the heightened growth demands and sustain cellular functionality. Recent studies have highlighted the extensive impact of m6A on the regulation of digestive tract tumor metabolism, further modulating tumor initiation and progression. Our review aims to provide a comprehensive understanding of the expression patterns, functional roles, and regulatory mechanisms of m6A in digestive tract tumor metabolism-related molecules and pathways. The characterization of expression profiles of m6A regulatory factors and in-depth studies on m6A methylation in digestive system tumors may provide new directions for clinical prediction and innovative therapeutic interventions.

Keywords