Engineering (Jul 2023)
A Review of Recent Developments in “On-Chip” Embedded Cooling Technologies for Heterogeneous Integrated Applications
Abstract
The electronics packaging community strongly believes that Moore’s law will continue for another few years due to recent technological efforts to build heterogeneously integrated packages. Heterogeneous integration (HI) can be at the chip level (a single chip with multiple hotspots), in multi-chip modules, or in vertically stacked three-dimensional (3D) integrated circuits. Flux values have increased exponentially with a simultaneous reduction in chip size and a significant increase in performance, leading to increased heat dissipation. The electronics industry and the academic research community have examined various solutions to tackle skyrocketing thermal-management challenges. Embedded cooling eliminates most sequential conduction resistance from the chip to the ambient, unlike separable cold plates/heat sinks. Although embedding the cooling solution onto an electronic chip results in a high heat transfer potential, technological risks and complexity are still associated with the implementation of these technologies and with uncertainty regarding which technologies will be adopted. This manuscript discusses recent advances in embedded cooling, fluid selection considerations, and conventional, immersion, and additive manufacturing-based embedded cooling technologies.