Frontiers in Communication (May 2023)

Artificial intelligence for health message generation: an empirical study using a large language model (LLM) and prompt engineering

  • Sue Lim,
  • Ralf Schmälzle

DOI
https://doi.org/10.3389/fcomm.2023.1129082
Journal volume & issue
Vol. 8

Abstract

Read online

IntroductionThis study introduces and examines the potential of an AI system to generate health awareness messages. The topic of folic acid, a vitamin that is critical during pregnancy, served as a test case.MethodWe used prompt engineering to generate awareness messages about folic acid and compared them to the most retweeted human-generated messages via human evaluation with an university sample and another sample comprising of young adult women. We also conducted computational text analysis to examine the similarities between the AI-generated messages and human generated tweets in terms of content and semantic structure.ResultsThe results showed that AI-generated messages ranked higher in message quality and clarity across both samples. The computational analyses revealed that the AI generated messages were on par with human-generated ones in terms of sentiment, reading ease, and semantic content.DiscussionOverall, these results demonstrate the potential of large language models for message generation. Theoretical, practical, and ethical implications are discussed.

Keywords