Anais da Academia Brasileira de Ciências (Dec 2002)

Spectral properties and conformal type of surfaces

  • PHILIPPE CASTILLON

DOI
https://doi.org/10.1590/S0001-37652002000400003
Journal volume & issue
Vol. 74, no. 4
pp. 585 – 588

Abstract

Read online

In this short note, we announce a result relating the geometry of a riemannian surface to the positivity of some operators on this surface (the operators considered here are of the form surface Laplacian plus a scalar multiple of the curvature function). In particular we obtain a theorem "à la Huber'': under a spectral hypothesis we prove that the surface is conformally equivalent to a Riemann surface with a finite number of points removed. This problem has its origin in the study of stable minimal surfaces.Nesta comunicação, anunciamos um resultado que relaciona a geometria de uma superfície riemanniana com a positividade de certos operadores na superfície (os operadores considerados têm forma "Laplaciano mais um múltiplo da curvatura''). Em particular, obtemos um teorema "à la Huber'': usando uma condição espectral, provamos que a superfície é conformemente equivalente a uma superfície de Riemann menos um número finito de pontos. Este problema tem origem no estudo das superfícies mínimas estáveis.

Keywords