Journal of Advanced Ceramics (May 2023)

Dielectric barrier discharge-based defect engineering method to assist flash sintering

  • Xinhao Zhao,
  • Nianping Yan,
  • Yueji Li,
  • Zikui Shen,
  • Rongxia Huang,
  • Chen Xu,
  • Xuetong Zhao,
  • Xilin Wang,
  • Ruobing Zhang,
  • Zhidong Jia

DOI
https://doi.org/10.26599/JAC.2023.9220737
Journal volume & issue
Vol. 12, no. 5
pp. 1046 – 1057

Abstract

Read online

Oxygen vacancy OV plays an important role in a flash sintering (FS) process. In defect engineering, the methods of creating oxygen vacancy defects include doping, heating, and etching, and all of them often have complex processes or equipment. In this study, we used dielectric barrier discharge (DBD) as a new defect engineering technology to increase oxygen vacancy concentrations of green billets with different ceramics (ZnO, TiO2, and 3 mol% yttria-stabilized zirconia (3YSZ)). With an alternating current (AC) power supply of 10 kHz, low-temperature plasma was generated, and a specimen could be treated in different atmospheres. The effect of the DBD treatment was influenced by atmosphere, treatment time, and voltage amplitude of the power supply. After the DBD treatment, the oxygen vacancy defect concentration in ZnO samples increased significantly, and a resistance test showed that conductivity of the samples increased by 2–3 orders of magnitude. Moreover, the onset electric field (E) of ZnO FS decreased from 5.17 to 0.86 kV/cm at room temperature (RT); while in the whole FS, the max power dissipation decreased from 563.17 to 27.94 W. The defect concentration and conductivity of the green billets for TiO2 and 3YSZ were also changed by the DBD, and then the FS process was modified. It is a new technology to treat the green billet of ceramics in very short time, applicable to other ceramics, and beneficial to regulate the FS process.

Keywords