PLoS ONE (Dec 2009)

Extramitochondrial Ca2+ in the nanomolar range regulates glutamate-dependent oxidative phosphorylation on demand.

  • Frank Norbert Gellerich,
  • Zemfira Gizatullina,
  • Odeta Arandarcikaite,
  • Doreen Jerzembek,
  • Stefan Vielhaber,
  • Enn Seppet,
  • Frank Striggow

DOI
https://doi.org/10.1371/journal.pone.0008181
Journal volume & issue
Vol. 4, no. 12
p. e8181

Abstract

Read online

We present unexpected and novel results revealing that glutamate-dependent oxidative phosphorylation (OXPHOS) of brain mitochondria is exclusively and efficiently activated by extramitochondrial Ca(2+) in physiological concentration ranges (S(0.5) = 360 nM Ca(2+)). This regulation was not affected by RR, an inhibitor of the mitochondrial Ca(2+) uniporter. Active respiration is regulated by glutamate supply to mitochondria via aralar, a mitochondrial glutamate/aspartate carrier with regulatory Ca(2+)-binding sites in the mitochondrial intermembrane space providing full access to cytosolic Ca(2+). At micromolar concentrations, Ca(2+) can also enter the intramitochondrial matrix and activate specific dehydrogenases. However, the latter mechanism is less efficient than extramitochondrial Ca(2+) regulation of respiration/OXPHOS via aralar. These results imply a new mode of glutamate-dependent OXPHOS regulation as a demand-driven regulation of mitochondrial function. This regulation involves the mitochondrial glutamate/aspartate carrier aralar which controls mitochondrial substrate supply according to the level of extramitochondrial Ca(2+).