AIP Advances (Jan 2020)

Effect of insertion of bathocuproine buffer layer at grating-structured cathode–organic-layer interface in bulk-heterojunction solar cells

  • Masaru Sakomura,
  • Yuya Yokokura,
  • Yusuke Takagi,
  • Kazuyoshi Ueda

DOI
https://doi.org/10.1063/1.5129351
Journal volume & issue
Vol. 10, no. 1
pp. 015144 – 015144-8

Abstract

Read online

A grating-structured interface of a poly(3-hexylthiophene) (P3HT) and n-type [6,6]-phenyl-C61-butyric acid methyl ester (PCBM)-based bulk-heterojunction (BHJ) photovoltaic (PV) cell was designed and fabricated to obtain a desirable thickness distribution of the deposited bathocuproine (BCP) buffer layer to efficiently utilize its potentials. As a master mold of the grating-structure, a commercially available recordable digital versatile disc (DVD-R) substrate was employed. The grating-structured surface of the P3HT:PCBM layer was successfully produced by duplication from a poly(dimethylsiloxane) secondary mold using the spin cast molding technique. From morphological observations of the grating-structured surface covered with vapor-deposited BCP, we roughly estimated the ratio of the BCP thickness at “walls” to that at “top” and “bottom” regions to be ∼0.5. The grating-type BHJ PV cell with a 5-nm-thick BCP layer exhibited the maximum power-conversion efficiency (ηp) of 3.51%. Compared with the conventional flat-type BHJ PV cell with a 20-nm-thick BCP layer, the performance of the grating-type BHJ PV cell with a 20-nm-thick BCP layer was remarkably improved, owing to the contribution of the wall side contact, which provides a lower-barrier path of the electrons toward the cathode through the thinner BCP layer.