Alloys (Apr 2025)

Quantitative Study of Internal Defects in Copper Iron Alloy Materials Using Computed Tomography

  • Junli Guo,
  • Qiang Hu,
  • Kai Hu

DOI
https://doi.org/10.3390/alloys4020008
Journal volume & issue
Vol. 4, no. 2
p. 8

Abstract

Read online

Semi-continuous casting is an important method for the large-scale production of high-strength conductive copper-iron (Cu-Fe) alloys in the future. However, serious peeling defects were found on the surface of cold-rolled strips during industrial trials. Due to the multi-step complexity of the manufacturing process (from casting to final product), identifying the root cause of defect formation remains challenging. X-ray computed tomography (X-CT) was used to quantitatively characterize the pores and defects in the horizontal continuous casting Cu-Ni-Sn slab, the semi-continuous casting Cu-Fe alloy slab, and the hot-rolled slab of Cu-Fe, and the relationship between the defect characteristics and processes was analyzed. The results showed that the internal defect sphericity distribution of the Cu-Fe alloy slab after hot rolling was similar to that of the reference Cu-Ni-Sn slab. The main difference lies in the low sphericity range (<0.4). The volume of pore defects inside the Cu-Fe alloy after hot rolling was significantly larger than in the reference sample, with a 52-fold volume difference. This phenomenon may be the source of surface-peeling defects in the subsequent cold-rolling process. The occurrence of internal defects in the Cu-Fe alloy is related to both the composition characteristics and casting processes of the Cu-Fe alloy; on the other hand, it is also related to the hot-rolling process.

Keywords