Journal of Electromagnetic Engineering and Science (Nov 2022)

C-Band GaN Dual-Feedback Low-Noise Amplifier MMIC with High-Input Power Robustness

  • Ha-Wuk Sung,
  • Seong-Hee Han,
  • Seong-Il Kim,
  • Ho-Kyun Ahn,
  • Jong-Won Lim,
  • Dong-Wook Kim

DOI
https://doi.org/10.26866/jees.2022.6.r.137
Journal volume & issue
Vol. 22, no. 6
pp. 678 – 685

Abstract

Read online

In this paper, using the 0.2 μm ETRI GaN HEMT process, we developed a C-band GaN dual-feedback low-noise amplifier MMIC for an RF receiver module that requires high-input power robustness. By applying a feedback microstrip line at the source of the transistor and series resistor-capacitor (RC) feedback between the gate and the drain of the transistor, we obtained stable amplifier operation and a compromised impedance trace for both input impedance matching and noise matching while suppressing performance degradation of the maximum available gain and minimum noise figure. The developed low-noise amplifier MMIC, which implements simple matching circuits by using biasing elements as matching elements, had a linear gain of more than 21.4 dB and a noise figure of less than 1.91 dB in the wide bandwidth of 4.3–7.4 GHz. Under the single-tone power test, the low-noise amplifier MMIC had an output P1dB of 14.3–20.1 dBm, and the two-tone intermodulation distortion measurement exhibited an input third-order intercept point (IIP3) of 2.2–5.6 dBm in the same frequency range as the above.

Keywords