Applied Sciences (Dec 2020)

Picosecond Laser Processing of Photosensitive Glass for Generation of Biologically Relevant Microenvironments

  • Florin Jipa,
  • Stefana Orobeti,
  • Cristian Butnaru,
  • Marian Zamfirescu,
  • Emanuel Axente,
  • Felix Sima,
  • Koji Sugioka

DOI
https://doi.org/10.3390/app10248947
Journal volume & issue
Vol. 10, no. 24
p. 8947

Abstract

Read online

Various material processing techniques have been proposed for fabrication of smart surfaces that can modulate cellular behavior and address specific clinical issues. Among them, laser-based technologies have attracted growing interest due to processing versatility. Latest development of ultrashort pulse lasers with pulse widths from several tens of femtoseconds (fs) to several picoseconds (ps) allows clean microfabrication of a variety of materials at micro- and nanoscale both at surface and in volume. In this study, we addressed the possibility of 3D microfabrication of photosensitive glass (PG) by high repetition rate ps laser-assisted etching (PLAE) to improve the fabrication efficiency for the development of useful tools to be used for specific biological applications. Microfluidic structures fabricated by PLAE should provide the flow aspects, 3D characteristics, and possibility of producing functional structures to achieve the biologically relevant microenvironments. Specifically, the microfluidic structures could induce cellular chemotaxis over extended periods in diffusion-based gradient media. More importantly, the 3D characteristics could reproduce capillaries for in vitro testing of relevant organ models. Single cell trapping and analysis by using the fabricated microfluidic structures are also essential for understanding individual cell behavior within the same population. To this end, this paper demonstrates: (1) generation of 3D structures in glass volume or on surface for fabrication of microfluidic channels, (2) subtractive 3D surface patterning to create patterned molds in a controlled manor for casting polydimethylsiloxane (PDMS) structures and developing single cell microchambers, and (3) designing glass photo-masks to be used for sequel additive patterning of biocompatible nanomaterials with controlled shapes, sizes, and periodicity. Mesenchymal stem cells grown on laser-processed glass surfaces revealed no sign of cytotoxicity, while a collagen thin coating improved cellular adhesion.

Keywords