Applied Sciences (May 2022)
Augmented Reality in Orthopedic Surgery and Its Application in Total Joint Arthroplasty: A Systematic Review
Abstract
The development of augmented reality (AR) and its application in total joint arthroplasty aims at improving the accuracy and precision in implant components’ positioning, hopefully leading to increased outcomes and survivorship. However, this field is far from being thoroughly explored. We therefore performed a systematic review of the literature in order to examine the application, the results, and the different AR systems available in TJA. A systematic review of the literature according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines was performed. A comprehensive search of PubMed, MEDLINE, EMBASE, and the Cochrane Database of Systematic Reviews was conducted for English articles on the application of augmented reality in total joint arthroplasty using various combinations of keywords since the inception of the database to 31 March 2022. Accuracy was intended as the mean error from the targeted positioning angle and compared as mean values and standard deviations. In all, 14 articles met the inclusion criteria. Among them, four studies reported on the application of AR in total knee arthroplasty, six studies on total hip arthroplasty, three studies reported on reverse shoulder arthroplasty, and one study on total elbow arthroplasty. Nine of the included studies were preclinical (sawbones or cadaveric), while five of them reported results of AR’s clinical application. The main common feature was the high accuracy and precision when implant positioning was compared with preoperative targeted angles with errors ≤2 mm and/or ≤2°. Despite the promising results in terms of increased accuracy and precision, this technology is far from being widely adopted in daily clinical practice. However, the recent exponential growth in machine learning techniques and technologies may eventually lead to the resolution of the ongoing limitations including depth perception and their high complexity, favorably encouraging the widespread usage of AR systems.
Keywords