Catalysts (May 2023)

Effects of ZSM-5 Morphology and Fe Promoter for Dimethyl Ether Conversion to Gasoline-Range Hydrocarbons

  • Mansoor Ali,
  • Jong Jin Kim,
  • Faisal Zafar,
  • Dongming Shen,
  • Xu Wang,
  • Jong Wook Bae

DOI
https://doi.org/10.3390/catal13050910
Journal volume & issue
Vol. 13, no. 5
p. 910

Abstract

Read online

The synthesis of gasoline-range hydrocarbons by gas-phase dimethyl ether (DME) conversion was investigated on various ZSM-5 zeolites with different morphologies and Fe contents. The different morphologies of ZSM-5 significantly altered the distributions of the acidic sites, which showed different selectivities to gasoline-range hydrocarbons. Nanostructured ZSM-5 (N-ZSM-5) revealed the highest C5+ selectivity of 41.7% with an aromatics selectivity of 23.6% at ~100% DME conversion. The superior catalytic activity of N-ZSM-5 was attributed to the largest strong Brønsted acidic sites and smaller crystallite sizes, which were beneficial for the faster removal rate of heavy hydrocarbons due to its shorter diffusion pathlength compared to conventional ZSM-5 (C-ZSM-5). In addition, 10 wt% Fe-impregnated N-ZSM-5 revealed an enhanced C5+ selectivity of 60.6% with a smaller C1–C4 selectivity of 21.9%, which were attributed to the adjusted acidic sites by suppressing the cracking reactions of the surface intermediates, which are responsible for the selective formation of smaller light hydrocarbons. However, the excess amount of Fe on N-ZSM-5 showed a lower DME conversion of 83.5% with a lower C5+ selectivity of 38.5% due to the blockages of the active acidic sites. Nanostructured N-ZSM-5 possessing a larger amount of strong Brønsted acid sites with 10 wt% Fe modification clearly showed a higher formation rate of gasoline-range hydrocarbons due to an enhanced secondary oligomerization of surface intermediates to form heavier aromatic hydrocarbons.

Keywords