Clinical Phytoscience (Oct 2023)
Evaluating the anti-urolithiasis potential of Ficus religiosa seed GC MS evaluated phytoconstituents based on their in-vitro antioxidant properties and in-silico ADMET and molecular docking studies
Abstract
Abstract Background Urolithiasis, the deposit of stones in the urinary tract is a pertinent clinical issue in daily practice that imposes a burden on the human health system. Ficus religiosa plant has historically been useful in preventing urolithiasis. There is currently no information on phytochemical profiling that specifies the precise phytochemicals in the seed that are active against urolithiasis. Methods F. religiosa seeds were extracted with different solvents in increasing order of their polarity by Soxhlet extraction. All the extracts were evaluated for their antioxidant potential. GC–MS profiling of the most potent antioxidant F. religiosa seed extract was done to evaluate the phytoconstituents. To evaluate the pharmacokinetics and drug-likeness properties of these compounds in silico ADMET analysis was done. To comprehend the binding potential of the best ADMET evaluated phytochemicals contained in the F. religiosa seed extract against the several protein targets (matrix metalloproteinases (MMP-2, MMP-9), and Human calcium-sensing receptor (CaSR)) and antioxidant enzymes (Glutathione S-transferase (GST), glutathione-disulfide reductase (GR), glutathione peroxidase (GPX), and superoxide dismutase (SOD)) involved in urolithiasis, multi targets based virtual screening tests were done using Autodock Vina tool. Results GC–MS profiling revealed the presence of 53 different compounds. Of all these compounds, based on ADMET analysis 2-Methoxy-4-vinylphenol; 3,5-Di-tert-butylphenol; diethyl benzene-1,2-dicarboxylate; 4-hydroxy-3,5-dimethoxybenzaldehyde; 2-methoxy-4-prop-2-enylphenol; and bis (2-methyl propyl) benzene-1,2-dicarboxylate were found to have best pharmacokinetics and drug-likeness properties. In the autodocking studies, 3,5-Di-tert-butyl phenol is proved to be the best of all in terms of binding energies with the selected targets. Conclusion The findings of this study suggest a framework for employing F. religiosa seed ethyl acetate extract as a potent herbal treatment for urolithiasis.
Keywords