Remote Sensing (Nov 2022)

Improved Estimation of O-B Bias and Standard Deviation by an RFI Restoration Method for AMSR-2 C-Band Observations over North America

  • Wangbin Shen,
  • Zhaohui Lin,
  • Zhengkun Qin,
  • Xuesong Bai

DOI
https://doi.org/10.3390/rs14215558
Journal volume & issue
Vol. 14, no. 21
p. 5558

Abstract

Read online

Spaceborne microwave radiometer observations play vital roles in surface parameter retrievals and data assimilation, but widespread radio-frequency interference (RFI) signals in the C-band channel result in a lack of valuable data over large areas. Establishing repaired data based on existing observation information is crucial. In this study, Advanced Microwave Scanning Radiometer (AMSR)-2 C-band data affected by RFI were accurately repaired through the iterative principal component analysis (PCA) method in 2016 over the U.S. land area. The standard deviation (STD) and bias characteristics of the brightness temperature in the C-band vertical polarization channel were compared and analyzed before and after the restoration to verify the assimilation application prospect of the repaired data. Not only was the spatial continuity of the microwave imager observations significantly improved following restoration; the STD and bias of the observation minus background (OMB) of the restored data were basically consistent with those of the RFI-free data. The STD of OMB exhibited obvious seasonal variations, which were approximately 4.0 K from January to May and 3.0 K from June to December, whereas the biases were near zero in winter but negative (approximately −2.0 K) in summer. The surface type and terrain height also critically affected the STD and bias. The STD decreased with increasing terrain height, whereas the bias exhibited the opposite trend. The STD was largest in low-vegetation areas (4.0 K) but only approximately 2.0–3.0 K in pine forest and brush areas. These results show that the restored data have a high prospect for retrieval application and assimilation, and the STD and bias estimation results also provide a reference for land-based AMSR-2 data assimilation.

Keywords