BMC Bioinformatics (Jan 2022)

Classifying microscopic images as acute lymphoblastic leukemia by Resnet ensemble model and Taguchi method

  • Yao-Mei Chen,
  • Fu-I Chou,
  • Wen-Hsien Ho,
  • Jinn-Tsong Tsai

DOI
https://doi.org/10.1186/s12859-022-04558-5
Journal volume & issue
Vol. 22, no. S5
pp. 1 – 21

Abstract

Read online

Abstract Background Researchers have attempted to apply deep learning methods of artificial intelligence for rapidly and accurately detecting acute lymphoblastic leukemia (ALL) in microscopic images. Results A Resnet101-9 ensemble model was developed for classifying ALL in microscopic images. The proposed Resnet101-9 ensemble model combined the use of the nine trained Resnet-101 models with a majority voting strategy. Each trained Resnet-101 model integrated the well-known pre-trained Resnet-101 model and its algorithm hyperparameters by using transfer learning method to classify ALL in microscopic images. The best combination of algorithm hyperparameters for the pre-trained Resnet-101 model was determined by Taguchi experimental method. The microscopic images used for training of the pre-trained Resnet-101 model and for performance tests of the trained Resnet-101 model were obtained from the C-NMC dataset. In experimental tests of performance, the Resnet101-9 ensemble model achieved an accuracy of 85.11% and an F1-score of 88.94 in classifying ALL in microscopic images. The accuracy of the Resnet101-9 ensemble model was superior to that of the nine trained Resnet-101 individual models. All other performance measures (i.e., precision, recall, and specificity) for the Resnet101-9 ensemble model exceeded those for the nine trained Resnet-101 individual models. Conclusion Compared to the nine trained Resnet-101 individual models, the Resnet101-9 ensemble model had superior accuracy in classifying ALL in microscopic images obtained from the C-NMC dataset.

Keywords