PLoS ONE (Jan 2015)

Increase in Vascular Injury of Sodium Overloaded Mice May be Related to Vascular Angiotensin Modulation.

  • Cintia Taniguti Lima,
  • Juliane Cristina de Souza Silva,
  • Katia Aparecida da Silva Viegas,
  • Thais Cristina de Souza Oliveira,
  • Rariane Silva de Lima,
  • Leandro Ezequiel de Souza,
  • Danielle Aragão,
  • Dulce Elena Casarini,
  • Maria Claudia Irigoyen,
  • Silvia Lacchini

DOI
https://doi.org/10.1371/journal.pone.0128141
Journal volume & issue
Vol. 10, no. 6
p. e0128141

Abstract

Read online

This study aimed to analyzing the effect of chronic sodium overload upon carotid and femoral injury, and its relation to vascular angiotensin modulation. Male C57Bl6 mice were divided in: control (cont), receiving 1% NaCl solution for 2 weeks (salt-2) or 12 weeks (salt-12). Two-weeks before the end of the study, a 2mm catheter was implanted around the left femoral and carotid arteries to induce injury. Blood pressure (BP) and heart rate (HR) were measured at the end of the study by tail plethysmography. Arteries were collected and prepared for histological analysis to determine arterial thickening and perivascular collagen deposition. Angiotensin II and Ang(1-7) were quantified in fresh arteries using the HPLC method. There were no differences in body weight, BP and HR. Intima/media ratio had a similar increase in both injured arteries of cont and salt-2 mice, but a more pronounced increase was observed in salt-12 mice (31.1±6%). On the other hand, sodium overload modified perivascular collagen deposition, increasing thick fibers (cont: 0.5%; salt-2: 3.4%; salt-12: 0.6%) and decreasing thin fibers (cont: 7.4%; salt-2: 0.5%; salt-12: 6.8%) in non-injured arteries. Injured arteries presented similar collagen fiber distribution. Angiotensin quantification showed increased Ang(1-7) in salt treated mice (salt-2: +72%; salt-12: +45%) with a concomitant decrease in Ang II (salt-2: -54%; salt-12: -60%). Vascular injury increased significantly Ang(1-7) in salt-12 mice (+80%), maintaining Ang II reduction similar to that of a non-injured artery. The lack of changes in BP and HR suggests that the structural changes observed may be due to non-hemodynamic mechanisms such as local renin-angiotensin system. Collagen evaluation suggests that sodium overload induces time-related changes in vascular remodeling. The increase of artery injury with concomitant increase in Ang(1-7) in 12-week treated mice shows a direct association between the duration of salt treatment and the magnitude of vascular injury.