Molecules (Dec 2022)

Understanding the Regioselectivity and the Molecular Mechanism of [3 + 2] Cycloaddition Reactions between Nitrous Oxide and Conjugated Nitroalkenes: A DFT Computational Study

  • Ewa Dresler,
  • Aneta Wróblewska,
  • Radomir Jasiński

DOI
https://doi.org/10.3390/molecules27238441
Journal volume & issue
Vol. 27, no. 23
p. 8441

Abstract

Read online

Regiochemical aspects and the molecular mechanism of the [3 + 2] cycloaddition between nitrous oxide and conjugated nitroalkenes were evaluated on the basis of the wb97xd/6-311 + G(d) (PCM) computational study. It was found that, independently of the nature of the nitroalkene, all considered processes are realized via polar, single-step mechanisms. All attempts at the localization of hypothetical zwitterionic intermediates were unsuccessful. Additionally, the DFT computational study suggested that, in the course of the reaction, the formation of respective Δ2-4-nitro-4-R1-5-R2-1-oxa-2,3-diazolines was preferred from the kinetic point of view.

Keywords