Brain Sciences (Nov 2022)
Apelin-13 Protects Neurons by Attenuating Early-Stage Postspinal Cord Injury Apoptosis In Vitro
Abstract
Apelin is a 77-amino-acid peptide that is an endogenous ligand for the G protein-coupled receptor APJ (Apelin receptor, APJ). Apelin-13, as the most bioactive affinity fragment of apelin, plays a role in energy metabolism, myocardial ischemia-reperfusion injury, and the regulation of the inflammatory response during oxidative stress, but its role in spinal cord injury is still unclear. This research identified and verified the differential expression of apelin in rat spinal cord injured tissues and normal spinal cord tissues by transcriptome sequencing in vivo and proved that apelin-13 protects neurons by strengthening autophagy and attenuating early-stage postspinal cord injury apoptosis in vitro. After constructing the model concerning a rat spinal cord hemisection damage, transcriptome sequencing was performed on the injured and normal spinal cord tissues of rats, which identified the differentially expressed gene apelin, with qRT-PCR detecting the representative level of apelin. The oxygen-glucose deprivation (OGD) model of PC12 cells was constructed in vitro to simulate spinal cord injury. The OGD injury times were 2 h, 4 h, 6 h, 8 h, and 12 h, and the non-OGD injury group was used as the control. The expression of apelin at each time point was observed by Western blotting. The expression of apelin was the lowest in the 6 h OGD injury group (p p p p p < 0.05), increasing the key to Beclin1-dependent autophagy pathway expression of the protein Beclin1. This finding indicates that apelin-13 protects neurons by strengthening autophagy and attenuating early-stage postspinal cord injury apoptosis in vitro.
Keywords