Nanometric MIL-125-NH2 Metal–Organic Framework as a Potential Nerve Agent Antidote Carrier
Sérgio M. F. Vilela,
Pablo Salcedo-Abraira,
Isabelle Colinet,
Fabrice Salles,
Martijn C. de Koning,
Marloes J. A. Joosen,
Christian Serre,
Patricia Horcajada
Affiliations
Sérgio M. F. Vilela
APMU, IMDEA Energy Institute, Avda. Ramón de la Sagra 3, E-28935 Móstoles, Madrid, Spain
Pablo Salcedo-Abraira
APMU, IMDEA Energy Institute, Avda. Ramón de la Sagra 3, E-28935 Móstoles, Madrid, Spain
Isabelle Colinet
Institut Lavoisier de Versailles, Université de Versailles St Quentin, UMR CNRS 8180, 45 Avenue des Etats-Unis, University Paris Saclay, 78035 Versailles, France
Fabrice Salles
Institut Charles Gerhardt Montpellier UMR 5253 CNRS UM, Université Montpellier, Place E. Bataillon, 34095 Montpellier CEDEX 05, France
Martijn C. de Koning
TNO, Lange Kleiweg 137, NL-2288GJ Rijswijk, The Netherlands
Marloes J. A. Joosen
TNO, Lange Kleiweg 137, NL-2288GJ Rijswijk, The Netherlands
Christian Serre
Institut Lavoisier de Versailles, Université de Versailles St Quentin, UMR CNRS 8180, 45 Avenue des Etats-Unis, University Paris Saclay, 78035 Versailles, France
Patricia Horcajada
APMU, IMDEA Energy Institute, Avda. Ramón de la Sagra 3, E-28935 Móstoles, Madrid, Spain
The three-dimensional (3D) microporous titanium aminoterephthalate MIL-125-NH2 (MIL: Material of Institut Lavoisier) was successfully isolated as monodispersed nanoparticles, which are compatible with intravenous administration, by using a simple, safe and low-cost synthetic approach (100 °C/32 h under atmospheric pressure) so that for the first time it could be considered for encapsulation and the release of drugs. The nerve agent antidote 2-[(hydroxyimino)methyl]-1-methyl-pyridinium chloride (2-PAM or pralidoxime) was effectively encapsulated into the pores of MIL-125-NH2 as a result of the interactions between 2-PAM and the pore walls being mediated by π-stacking and hydrogen bonds, as deduced from infrared spectroscopy and Monte Carlo simulation studies. Finally, colloidal solutions of MIL-125-NH2 nanoparticles exhibited remarkable stability in different organic media, aqueous solutions at different pH and under relevant physiological conditions over time (24 h). 2-PAM was rapidly released from the pores of MIL-125-NH2 in vitro.