Engineering and Technology Journal (Sep 2021)

Numerical Analysis of Linear Elevator Structure Using Finite Element Method

  • Saba Othman,
  • Jamal Mohammed,
  • Farag Mohammed

DOI
https://doi.org/10.30684/etj.v39i9.2083
Journal volume & issue
Vol. 39, no. 9
pp. 1430 – 1436

Abstract

Read online

In this work, the structure of the linear elevator prototype had been investigated numerically using finite element method. The linear motor structure parameters analyzed using Maxwell ANSYS. The time-stepping method depending on Maxwell equations be applied for analyzing and optimizing the magnetic and force characteristics. While the elevator structure parameters were analyzed using ANSYS workbench based on the principle of virtual work. The frame considered as clamped- clamped beam, and the base of the car considered as thin plate with small deflection. The analysis done with maximum applied load of 360 N at 1.5 safety factor. The results show the distribution of the magnetic lines, the flux density values plus the leakage flux inside the slots. The maximum Von-Mises stress and the deformations of the frame and plate at maximum load are acceptable and present save design. In which the maximum deflection of the thin plate not exceed (thickness/5) at maximum design load.

Keywords