JISKA (Jurnal Informatika Sunan Kalijaga) (Sep 2024)
Implementasi Data Augmentation untuk Klasifikasi Sampah Organik dan Non Organik Menggunakan Inception-V3
Abstract
The surge in global waste, particularly in Indonesia, with a total of 36.218 million tons per year, has become an urgent issue. Challenges in waste management are increasingly complex due to the lack of public understanding and awareness in classifying types of waste. One systemic approach to address waste classification issues involves the use of machine learning technology to categorize waste into two main types: organic and non-organic. The data used in this study comes from a Kaggle website dataset comprising 25,500 entries. This research employs a transfer learning approach with the Inception-V3 architecture and data augmentation implementation. Transfer learning is chosen for its proven performance in image data classification, while data augmentation is implemented to introduce diversity to the dataset. The research stages include business understanding, data preprocessing, data augmentation, data modelling, and evaluation. The results show that the use of transfer learning with the Inception-V3 approach and data augmentation implementation achieves an accuracy rate of 94%, which falls into the excellent category.
Keywords