Эпилепсия и пароксизмальные состояния (2020-04-01)

Interpretation of electroencephalography in infants

  • A. G. Koshchavtsev,
  • S. V. Grechanyi

Journal volume & issue
Vol. 12, no. 1
pp. 9 – 25


Read online

Aim: Based on published reports and our own observations, we aimed to assign the graphical elements of EEG into normal and abnormal groups and then identify up to five main graphic elements in each group to facilitate visual analysis and interpretation of EEG in young children.Materials and methods. We searched for the relevant sources in the Medline and Medscape databases using the following keywords: «neonatal EEG», «neonatal seizures», «theta burst», «delta brushes», «trace discontinue», «burst-suppression», hypsarrhythmia», etc. Our own research was conducted using an Encephalan-EEGR-19/26 encephalograph equipped with children size gold cup electrodes with a diameter of 0.6 cm. Encephalograms were recorded from 10 electrodes according to the international “10-20” system.Results and discussion. In early childhood EEGs, two large groups of EEG graphic elements can be discerned: the likely normative graphic elements and patterns of pediatric EEG (normal patterns) and the likely non-normative (abnormal) graphic elements and patterns of pediatric EEG. In the likely normative group, the main features are represented by: theta bursts, delta brushes, the “intermittent EEG curve” pattern, the occipital theta rhythm, and slow-sleep waves. In the likely non-normative group, those are: paroxysmal EEG graphic elements, asynchronous EEG patterns, spike-wave discharges, 3 Hz peak waves, hypsarrhythmia, burst-suppression pattern, rolandic occipital spikes, and a slowing rhythm pattern.Conclusion. Along with the numerous attempts to characterize the age-dependent graphic elements at an early age, there are few reports concerning older children and adults. Here we try to overcome this discrepancy by identifying two large groups of graphic elements in EEG that are similar between infants and children of an older age. Such an approach may contribute to a better understanding of normal and pathological ontogenesis.